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CHM 8309: Statistical Mechanics / Saman Alavi / University of Ottawa 

Problem Set – Due Oct. 7, 2022 

Please hand in Excel spreadsheets as supporting documents (via email), but present your answers 

in a Word or PDF document. Cut and paste the graphs from Excel into the Word document when 

needed. 

 

1) (40 points) a) A mass of 1 kg is connected to a spring with force constant of 1 kg/s
2
 and a 

natural length of 30 cm. The mass is constrained to move in one dimension. In one experiment, 

the mass is pulled such that the spring is extended by 5 cm and then released. In a second 

experiment, the mass is pulled such that the spring is extended by 12 cm and then released.  

Plot the two phase space trajectories for these cases on the same graph and indicate the starting 

point of the motion along with the direction of motion in each trajectory.  

ξ = 0.05 m → E = 0.5×k×ξ
2
 = 0.5×1×(0.05)

2
 = 1.25×10

-3
 kg∙m/s

2
 = 1.25×10

-3
 J 

E = 0.5×m×vmax
2 

→ vmax = (2.5×10
-3

)
1/2

 = 0.05 m/s 

 

ξ = 0.12 m → E = 0.5×k×ξ
2
 = 0.5×1×(0.12)

2
 = 7.2×10

-3
 kg∙m/s

2
 = 7.2×10

-3
 J 

E = 0.5×m×vmax
2 

→ vmax = (1.0×10
-2

)
1/2

 = 0.12 m/s  
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b) If a point in the phase space of the harmonic oscillator is given, how would we determine the 

corresponding phase space trajectory?   

Substitution in the equation for the trajectory and finding the constants of the motion 

corresponding to the specific energy. 

 

For this problem, use Excel or computer coding for numerical calculations. Calculations by hand 

will be too time consuming! If you are not familiar with numerical calculations in Excel a small 

tutorial can be arranged.   
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2) (40 points) The energy levels of N non-interacting molecules in a quantum mechanical box 

are given by, 

   
2

2 2 2

2/3
1 18

N N

N x y z
v

h
E V n n n

mV
   




 

       

a) For a system with 1 molecule, what are the six lowest energy levels? Write the energy levels 

in unit-less form as multiples of a = h
2
/8mV

2/3
. Determine the degeneracy of each energy level.  

In terms of multiples of 8mV
2/3

E/h
2
 the (energies, degeneracies) of the levels are: 

(3, 1), (6, 3), (9, 3), (11, 3), (12, 1), (14, 6) 

b) For a system with the same volume as part a) with two molecules, what are the six lowest 

energy levels? Write the energy levels in unit-less form as 8mV
2/3

E/h
2
. Determine the degeneracy 

of each energy level.    

In terms of multiples of 8mV
2/3

E/h
2
 the (energies, degeneracies) of the levels are: 

(6, 1), (9, 6), (12, 15), (14, 6), (15, 20) 

c) If the volume of a box with one molecule increases such that Vnew = 1.5Vold, what are the 

energies of the six lowest levels of the system. 

For Vnew = 1.5Vold  we have Enew = Eold/(1.5)
2/3

 = 0.76Eold . All the energies in part (a) would be 

multiplied by 0.76. 

Describe how the energy levels of a system change when the number of molecules increases and 

the volume of the system changes. 

The energy levels are more closely spaced in the system with larger volume. 

d) Consider an individual krypton atom as part of an ideal gas in a cubic box of macroscopic size 

of 10 cm on a side. What is the gap between the first two energy levels for a single Kr atom in a 

box of this size? Compare this energy with the magnitude of the average kinetic energy of an 

krypton atom at 300 K which is 3kT/2. 

  1 nm 1 cm  Description 

M / g/mol 83.80 83.80 Atomic mass of krypton  

Mass of Kr / kg 1.3916×10-25 1.3916×10-25 Mass of Kr in grams  

V / m3 1.0000E-27 1.0000E-06  Volume of the system 

h / (m2*kg/s) 6.6260×10-34 6.6260×10-34 Planck's constant 

N_A 6.0220×1023 6.0220×1023 Avogadro's number 

h^2/8mV^2/3 3.9438×10-25 3.9438×10-39 (m4kg2/s2)/(kg·m2) 

k / (m2kg/s2K) 1.3810×10-23 1.3810×10-23 Boltzmann's constant 
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T / K 300 300   

1.5kT / kgm2/s2 6.21×10-21 6.21×10-21 Average thermal energy  

        

ΔE / (1.5kT) 1.9038×10-4 1.9038×10-18   

 

See the table for a calculation of the energy level for the particle in a box along with the thermal 

energy at 300 K. The gap between energy levels for a cubic box of 10 cm length is smaller by a 

factor of 10
-18

 than the thermal energy.  

 

3) (20 points) The Gaussian distribution 

Consider two Gaussian functions: One with (x0 = 3;  = 2) and the second with (x0 = -1;  = 3). 

a) Plot the individual Gaussian functions and their product, for example, with Excel. Visually 

show that the product of the two Gaussian functions is also a Gaussian function.  
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b) What is the x0 value for the product Gaussian function (you can read it off the graph)? How 

does the standard deviation of the product function compare to the individual Gaussians?    

x0 for the product function is around 1.6. Notice the product is not normalized. The product 

distribution looks narrower than the two distributions used in the convolution. 
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4) (20 points) Consider a system of non-interacting molecules each having equally spaced energy levels (similar to that discussed in 

the lectures). 

a) For a case with six molecules in this system with a total energy of Etot = 6, determine all possible distributions for this case and the 

degeneracy of each distribution. Plot the probabilities of occupancy of each of the levels 0, 1, …, 6 in this system over the entire 

ensemble of systems. 

The eleven possible distributions among the levels with energy of 0 to 6, the number of ways to determine each distribution are shown 

in the table below. The probability of each level being occupied among all distributions is plotted below, showing a graded overall 

distribution of states.  

d 0 1 2 3 4 5 6 w n Total 

1 0 6 0 0 0 0 0 1 6 6 

2 1 4 1 0 0 0 0 30 6 6 

3 2 3 0 1 0 0 0 60 6 6 

4 2 2 2 0 0 0 0 90 6 6 

5 3 2 0 0 1 0 0 60 6 6 

6 3 1 1 1 0 0 0 120 6 6 

7 3 0 3 0 0 0 0 20 6 6 

8 4 1 0 0 0 1 0 30 6 6 

9 4 0 1 0 1 0 0 30 6 6 

10 4 0 0 2 0 0 0 15 6 6 

11 5 0 0 0 0 0 1 6 6 6 
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b) Consider a system with 6 molecules, but a total energy of Etot = 9. Repeat the above exercise. How do the probabilities of 

occupancies of different levels change in this case?  

The 25 distributions among the levels with energy of 0 to 9, the number of ways to determine each distribution are shown in the table 

below. The probability of each level being occupied is plotted below, showing a graded overall distribution of states.  

d 0 1 2 3 4 5 6 7 8 9 w n Total 

1 5 0 0 0 0 0 0 0 0 1 6 6 9 

2 4 1 0 0 0 0 0 0 1 0 30 6 9 

3 4 0 1 0 0 0 0 1 0 0 30 6 9 

4 4 0 0 1 0 0 1 0 0 0 30 6 9 

5 4 0 0 0 1 1 0 0 0 0 30 6 9 

6 3 2 0 0 0 0 0 1 0 0 60 6 9 

7 3 1 1 0 0 0 1 0 0 0 120 6 9 

8 3 1 0 0 2 0 0 0 0 0 60 6 9 
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9 3 1 0 1 0 1 0 0 0 0 120 6 9 

10 3 0 1 1 1 0 0 0 0 0 120 6 9 

11 3 0 2 0 0 1 0 0 0 0 60 6 9 

12 3 0 0 3 0 0 0 0 0 0 20 6 9 

13 2 3 0 0 0 0 1 0 0 0 60 6 9 

14 2 2 1 0 0 1 0 0 0 0 180 6 9 

26 2 2 0 1 1 0 0 0 0 0 180 6 9 

15 2 1 2 0 1 0 0 0 0 0 180 6 9 

16 2 1 1 2 0 0 0 0 0 0 180 6 9 

17 2 0 3 1 0 0 0 0 0 0 60 6 9 

18 1 4 0 0 0 1 0 0 0 0 30 6 9 

19 1 3 1 0 1 0 0 0 0 0 120 6 9 

20 1 3 0 2 0 0 0 0 0 0 60 6 9 

21 1 2 2 1 0 0 0 0 0 0 180 6 9 

22 1 1 4 0 0 0 0 0 0 0 30 6 9 

23 0 5 0 0 1 0 0 0 0 0 6 6 9 

24 0 4 1 1 0 0 0 0 0 0 30 6 9 

25 0 3 3 0 0 0 0 0 0 0 20 6 9 

Pi 0.357143 0.247253 0.164835 0.104895 0.062937 0.034965 0.017483 0.007493 0.002498 0.0005 2002 
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5) (40 points) Maxwell distribution 

a) Plot the distribution function for the energy of one molecule in an ideal gas (E1), for the sum 

of the energies of two molecules of an ideal gas (E2), and for the sum energies of 4 molecules of 

an ideal gas system (E4) on the same graph in terms of the variable of E/kT.  For each distribution 

function, show the most probable energy EP and the average value of the energy E on the 

graph. 

 

P1(E):  EP = kT/2  ; E = 3kT/2  

P2(E):  EP = 2kT ; E = 3kT 

P4(E):  EP = 5kT ; E = 6kT 

b) Replot the three distribution functions mentioned above as a function of the reduced energy 

E* = E/EP. How do the standard deviations (widths) of these three distribution functions change 

as a function of the reduced energy E*. 
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The width of the distribution is seen become more narrow as the number N increases.  

c) For each distribution, calculate or graphically determine the probability of observing an 

energy value twice the most probable energy, i.e., determine P(E2P) and compare it to P(EP). 

Explain why it becomes less probable to have an energy twice the most probable energy as the 

number of molecules in the system increases. 

For the distributions in part (a), the calculations in the attached spreadsheet show: 

P1(kT/2) = 0.47837;    P1(kT) = 0.41511  P1(EP)/P1(E2P) = 1.15 

P2(2kT) = 0.27067;   P2(4kT) = 0.14652  P2(EP)/P2(E2P) = 1.85 

P4(5kT) = 0.17547;   P4(10kT) = 0.03783  P4(EP)/P4(E2P) = 4.64 

The increase in number of particles leads to a narrowing of the distribution and the trend in the 

P(EP)/P(E2P) values. This may not be apparent from the figure in part (a).  

  

6) (20 points) Lagrange Multipliers 

(a) Find the maximum / minimum of the function f(x,y) = x
2 

+ y
2
 subject to the constraint that 

g(x,y) = 2x + y – 5 = 0. Determine the gradients of these two functions at the maximum point. 

2 2( , )f x y x y   and ( , ) 2 5 0g x y x y     

 2 2( , , ) ( , ) ( , ) 2 5x y f x y g x y x y x y           
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Substituting for x and y in terms of λ  in the last equation gives (2λ + λ/2 – 5) = 0   

(λ,x,y) = (2, 2, 1) 

 

(b) Find the maxima and minima of a function, f(x,y) = x
2
y subject to the constraint that g(x,y) = 

x
2 

+ y
2
 - 1 = 0 

2

2 2

( , , )
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( , , )
2 0

( , , )
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d x y
xy x

dx

d x y
x y
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d x y
x y

d












  




  

 

    


 

Substituting for x and y in terms of λ in the last equation gives (2λ
2
 + λ

2
 – 1) = 0   

(λ,x,y) = (1/√3, ±2/√3, 1/√3); (λ,x,y) = (-1/√3, ±2/√3, -1/√3) 

7) (30 points) The canonical partition function for a one molecule system. 

Independent molecules in a system have quantum states with the energy level structure shown 

below. The system has nine states and three energy levels which are spaced with an energy gap 

of Δ in between them. 

      

a) Plot the partition function and probability of observing the three energy levels as a function of 

temperature. Express the temperature in units of Δ/k. Go up to a temperature of 15k/Δ.   
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Plot of the temperature dependence of the partition function 

 

 

Plot of the temperature dependence of the probabilities of occupancy of the three states 

 

 

b) Plot the average energy, the variance in energy, and heat capacity for the system from 

temperature 0 up to 15k/Δ. Interpret the behavior of these graphs. 
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The average energy at high temperature goes to (3×0 + 2×1 + 4×3)/9 = 14/9 = 1.56. At high 

temperatures, the E  and E
2
 are close to their asymptotic values and so the variance is 

somewhat constant. 
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-The maximum in CV occurs when the thermal energy becomes equal to the energy gaps and the 

system can be excited to higher levels. The system then has the highest capacity to adsorb 

energy.     

-Because there are a limited number of energy states, the CV ultimately becomes zero when the 

levels are saturated and no more energy can be adsorbed.  5 

c) Plot the entropy of the system from temperature 0 up to 15k/Δ. Interpret the temperature 

behaviour of the entropy. 

7  

The initial rise is due to increasing “disorder” in the system. As more energy becomes available 

to the system, more ways of distributing the energy among a number of different energy levels 

can be found. As temperature increases and the energy levels become saturated, the entropy 

becomes constant. 3 
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